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Jahn-Teller impurity ion complexes in III-V 
semiconductors 

J A L Simpsont, J L Dunn and C A Bates 
Physics Department, The University, Nottingham NG7 2RD, UK 

Received 24 April 1990, in final form 17 July 1990 

Abstract. A method of studyingstrongly coupled orbital triplet ions formingpart of a trigonal 
tetrahedral complex is presented. It is based on the unitary transformation and energy 
minimization method described previously by Dunn and Bates for regular tetrahedral 
clusters, and it  is assumed that the ion is coupled to the e-modes and to one set of the t2- 
modes of the trigonal cluster. The coordinates of the 13 minima in the potential surface are 
found and they are related to the tetragonal, trigonal and orthorhombic minima of the 
regular cluster. Results are presented for both the radial and transverse t2-modes. The 
ground states located in each of the minima are also deduced. These calculations form the 
basis for the evaluation of Jahn-Teller reduction factors for orbital €riplet ions in such 
environments, which will be reported shortly. 

1. Introduction 

The technology used in the manufacturing of semiconducting materials has progressed 
much during the last decade, particularly with the fabrication of low-dimensional struc- 
tures and superlattices. Although such materials have reached a high degree of purity, 
they nevertheless are still not entirely free of donors and acceptors. Defects are well 
known to have a pronounced effect on the properties of these materials and their 
identification and/or possible elimination are often vital for their use as device materials. 
It is also very clear that many latent defects are not simply substitutional (or interstitial). 
They can involve the replacement of at least two standard adjacent ions or atoms by 
different ions or atoms to form what is termed a complex or an associate. 

In bulk semiconductors, it was realized that many of the unwanted conducting 
properties could be removed by intentionally doping the material with small con- 
centrations of transition metal ions (e.g. chromium in GaAs). Such impurities can 
generate deep levels in the band gap of the semiconductor which act as traps for the 
excess donor electrons or acceptor holes so that the material changes from being semi- 
conducting to semi-insulating. It is also very clear that many of such transition metal 
impurity ions do not enter the lattice as isolated, substitutional impurities but rather as 
part of a more complicated complex. For example, a significant fraction of the chromium 
impurity in GaAs occupies a Ga site which itself is adjacent to an As vacancy or, 
alternatively, is adjacent to another impurity (such as tellurium) which has substituted 
for the nearest-neighbour As atom. 
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The existence of impurity-ion complexes greatly complicates the interpretation of 
experimental data on magnetic impurity systems. Clerjaud (1985) summarized the data 
known at that time for both isolated ions and for those forming part of a complex in 
GaAs, GaP and InP bulk crystals. Since then, numerous examples of other complexes 
in both bulk and LDS semiconductors have been found but their basic structure often 
remains uncertain. It appears that many of the ions which are part of a complex are very 
strongly coupled to the surrounding lattice and are frequently termed Jahn-Teller (JT) 
ions. An example of this is the Cr2+-VAs complex (where VAS is a vacancy at an adjacent 
As site) in GaAs which gives very strong acoustic paramagnetic resonance (APR) spectra 
(Bates et a1 1984). The arsenic vacancy generates a sizeable trigonal field at the chromium 
site so that the resultant spectra has trigonal symmetry. (It should be noted that not all 
complexes contain magnetic ions.) 

The simplest procedure for modelling the impurity-ion complex is to treat the 
magnetic ion in the same way as an isolated ion with an additional but purely static 
trigonal field acting as a perturbation. The vibronic coupling is treated in Td symmetry. 
An alternative procedure is to solve the vibronic problem in C3" symmetry so that the 
trigonal field is not regarded as just a static perturbation. The latter approach was the 
one used by Jager (1968) for the study of sites of symmetry D,, in spinels, and by Abou- 
Ghantous et a1 (1974) and Lacroix et a1 (1979) for transition metal ions in corundum. 
The method was extended to the Cr*+:GaAs system by Picoli et a1 (1983a, b). In this 
work, coupling to all the e-modes was included (derived from both the cubic e- and tZ- 
modes). 

The aim of this paper is to develop a more general model for a strongly-coupled ion 
at the centre of a trigonal cluster which is applicable to many of the complexes found in 
111-V semiconductors. The method to be used is based on the unitary transformation 
and energy minimization approach developed for ions at sites of Td symmetry by Bates 
eta1 (1987, to be referred to as BDS), Dunn (1988, to be referred to as D) and by Dunn 
and Bates (1989) for orbital triplet systems. In a later paper (Simpson et af 1991), the JT 
reduction factors for the trigonal complex are derived so that they can be used to model 
the experimental data existing on many systems. 

It would appear that the method proposed here is an improvement on those methods 
cited above because it is especially applicable for strongly-coupled ions. It is hoped that 
it will assist in the identification of such magnetic-ion complexes in both bulk and LDS 
semiconducting materials. 

2. Themodel 

The trigonal cluster consists of a magnetic ion at the origin surrounded by four non- 
magnetic ligands at sites i (i = 1-4) in a tetrahedral configuration, in which the ligand at 
site 1 (chosen to lie in the [ l l l ]  direction), is different from the other three. The ligand 
1 could be either tellurium or selenium, for example, or a vacancy. Its effective mass 
and charge will be different from that of the other ligands. Even though the cluster is 
embedded in and in direct contact with the rest of the crystal, the cluster will be distorted 
from the regular tetrahedral shape as the length of the bond in the [111] direction will 
be different from that in the other directions. Both the distortion and the charge 
difference generate a trigonal field within the cluster with the trigonal axis along [lll]. 
They will also modify the ion-lattice coupling and consequently the Jahn-Teller model- 
ling of such systems. 
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In order to analyse the effect of such changes, it is necessary to define various 
parameters for the trigonal cluster. Let us suppose that the effective charge on the 
impurity ligand is q, and that its distance from the origin is d l .  Thus 

41 = (1 + d l  = (1 + a)d (2.1) 
where q is the effective charge on the other three ligands which are at a distance d from 
the origin. 

The Coulomb potential experienced by a single impurity electron at a point r due to 
the surrounding four ligand charges qi at equilibrium positions R(') is given by 

where qi = q and lR Io) I = d for ligands 2-4 and qi = q1 and lR (O) I = d l  for ligand 1. 
The ion-lattice coupling can be calculated by considering the effect that each of the 

collective modes of the cluster has on the ligands. In order to do this, local Cartesian co- 
ordinates axesare set up at each ligandsite in the usual way. The collective displacements 
Qj ,  defined in exactly the same way as for the perfect tetrahedral cluster (Bates 1978) 
are then decomposed into components along the trigonal axes (X i ,  Yi ,  Zi) at each site. 
It is necessary to consider the e-type displacements (Q,, Q,) and both of the sets of t2- 
type displacements (e4, Q,, Q6) and (Q,, Q,, e,), as all three modes of vibration 
are coupled to a T(I = 1) ion. The first set of t2 modes (e4, Q,, Q6)  involve radial 
displacements (Z i )  only and the other t2-modes involve transverse displacements only. 
Although they have identical transformation properties, their net effects will differ. 

As a result of the collective displacements Qj ,  the ligand at site i occupies a new point 
in space with a position vector 

Rli) = ~ $ 0 )  + Q Y )  (2.3) 
where QP) is the displacement of the ion at site i. The potential V(r)  is then obtained by 
substituting RY) forR Io) in (2.2). A binomial expansion in terms of Cartesian coordinates 
x ,  y ,  z for the electronic potential energy can be made in the usual way (see, for example, 
Hutchings 1964). The terms without the Qj produce the tetrahedral and trigonal fields. 
The terms involving the Q j  generate the ion-lattice coupling terms which may be further 
sub-divided, such that the main part (without both a and S) gives the ion-lattice inter- 
action Hamiltonian Hint for the regular tetrahedral cluster. The remaining terms give 
the contribution AH,,, to the ion-lattice coupling due to the change of ligand at site 1. It 
can be further sub-divided into that which arises from the change in the charge involving 
6 and that which arises from the static displacement involving a. 

3. The Hamiltonian for the ion-lattice couping 

3.1. The contribution from the regular tetrahedral cluster 

The linear ion-lattice interaction Hamiltonian for the regular tetrahedral cluster is given 
by (BDS, equation (3.1)) 

Hint = V E ( Q O E ,  + QEE,) + v ~ ( Q 4 T y z  + Q,Tzx + Q,Txy> 

+ Vz(Q7TyZ + QgTZ, + Q 9 7 ' x Y )  (3.1) 
where V E ,  VT and V 2  are the coupling constants for the e- and two t2-modes respectively. 
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The orbital operators are 

etc. HI,, can be written in second quantized form (D, equation ( 5 ) )  
EO = i(3lZ - 2) E ,  = $ f l ( l :  + 12)  Txy = i f l ( l x l y  + l y l x )  ( 3 4  

(3.3) HI", = 2 K,r,(b: + b,) ( j  = 8, E ;  4,5 ,6 ;  7 ,8 ,9)  
I 

where 

ro = c:cl + c$c2 - 2c:c3 

r4 = rl = c l c 3  + c$c2 

K O  = KE = KE = -fiVE/2(2PWE)'l2 

r ,  = -V~(C:C, - cic2) 

r5 = r8 = c i c l  + c:c3 r6 = r9 = c:c2 + c:cl 
(3.4) 

K4 = K5 = K6 = KT = (3h)'i2V~/2(2",)''2 

K ,  = K ,  = Kg = K2 = (3h)'/2V2/2(2~w2)'i2. 
It has been assumed that each phonon mode has mass ,U and frequency 
~ ~ , w h e r e w ~ = o , = w ~ , ~ ~ = ~ ~ =  W 6 =  ~ ~ a n d ~ ~ = w , = ~ ~ = ~ ~ . T h e c , a n d c : a r e  
second-quantized orbital operators and b, and b: are the second-quantized phonon 
operators, defined in the usual way. 

Quadratic coupling contributions to the interaction Hamiltonian should also be 
included. The most important of these is the bi-linear term which involves one E-type 
and one T,-type displacement (Sakamoto 1982). By an appropriate choice of the sign 
and size of this term, saddle points in the potential energy surface can be converted into 
minima of orthorhombic symmetry. It has the form (D, equation (7)) 

m =  8 , ~  

n = 4 , 5 , 6 , 7 , 8 , 9  HF: = KBL 2 k, , (b;b,  + b i b ,  + b i b , +  + b,b,)r ,  
m n  

(3.5) 
where KB, is the bilinear coupling constant, and the k,, are defined by 

Finally, the vibronic Hamiltonian is 

Hvib = 2 h w j ( b f  b,  + 2). 
i 

(3.7) 

Hence, the total Hamiltonian is 

H = H,,, + Hzk + Hvlb. (3.8) 
In their analysis, BDS and D considered coupling to only one of the t2-modes (namely 
that involving Q 4 ,  Q,, Q6) .  The result of  coupling to the other t2 mode would have been 
identical provided the labels 4-6 were changed to 7-9, VT to V 2  and wT to w2.  It is not 
clear which of the t2  modes dominate as calculations based on an idealized point charge 
model are very unreliable (e.g. Zunger 1986) and the effects of inner elasticity should 
be included (e.g. Cousins 1989). Unfortunately, the two types of t2 modes affect the 
calculations differently so that both possibilities must be considered. (The problem of a 
T ion coupled to both t2  modes simultaneously in a regular tetrahedral environment has 
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not yet been analysed in detail. It is impossible therefore to analyse further the cross- 
interaction between the two t,-modes which occurs via, for example, inner elasticity for 
the trigonal cluster). 

3.2. The additional contribution from the trigonal cluster 

For a T-ion coupled to the e- and radial t,-modes of the trigonal cluster, the method 
described in section 2.2 gives an additional contribution to Hint of 

AH,,, = kW,(QeEe + QEE,) + VT(Q, + Q j  + Q,)(Ty, + Tzx + Txy)  

- 1V2[(Qe - f iQE)Tyz  + (Qe + f iQE>Tzx - 2QeTxyl) (3.9) 
to the ion-lattice Hamiltonian from the charge asymmetry. The contributions arising 
from the ligand displacement are more complicated but follow an identical pattern to 
that given by (3.9) with 6 replaced by -4u but with the coupling constants VE, VT and 
V2 replaced by VL, V i  and V i  where 

vi = v(L) + $V',"' (L = E, 2) 
(3.10) 

Here V E  and Vg) etc. are the second- and fourth-order contributions respectively to 
the coupling constants V, etc. for a pure tetrahedral cluster (see, for example, Bates 
1978). The regular coupling constants are defined by 

(3.11) 
In a real trigonal cluster, the total additional contribution to the ion-lattice interaction 
is the sum of that part due to the change 6 in charge, as given in (3.9) plus that part due 
to the charge U in position of the ligand as summarized above. 

- v p  + $ v p  VT - 
(2) 

VM = v$) + v;) (M = E, T,  2). 

For a T-ion coupled to the transverse t,-modes, AH,,, is given by 

AHint = 46{vEEe[Qs + i(2Qg - Q8 - Q 7 ) l  + VEE,[Q, + f f i ( Q 7  - Q 8 ) I  

+ Vz(Tyz + TZx + Txy><Q, + Q x  + Q 9 )  

- tVz[T,Z(Qe - f i Q E  + 3Qx + 3Q9) 

+ Tzx(Qe + fiQ, + 3127 + 3Q9) 

+ Txy(-2Qe + 3Qs + 3Q7)I) (3.12) 
for charge asymmetry, As with the radial modes, the corresponding Hamiltonian for the 
ligand displacement is obtained by replacing 6 by -4a, and VM by V k  (M = E, L, 2) 
and the total interaction is again the sum of the two components. 

Although the expressions written above for AH,,, appear to have cubic symmetry, 
trigonal symmetry can be displayed by taking combinations of the Q, modes such as 

(Q4 + Q j  + e,>/* or 
which each have A,  symmetry in the trigonal group. 

Detailed calculations readily show that the above trigonal a,-modes have different 
coupling constants from the two other orthogonal trigonal e-modes derived from Q4, 
Q 5 ,  Qs. 

Equations (3.9) and (3.12) can also be written in second quantized form with the 
result 

AH,,, = as K,R,(b: + b,) (3.13) 

( Q 7  + Qs + Q,)/fi 

I 
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(3.14) 

As before, it is necessary to add to (3.13) that part due to the change in ligand position. 
The latter is obtained from (3.13) by replacing 6 by -4a, Ki by K,! and R j  by RI where 
K,! and R,! are obtained directly from (3.4) and (3.14) by replacing V ,  with V b  
(M = E, T, 2). 

We neglect the effect of the trigonal perturbation on the bi-linear term as the changes 
will be small. The total Hamiltonian allowing for distortions is thus H ’  = Hint + 
AHint + Ha\ + Hvib. 

4. The unitary transformation 

In the strong coupling limit, the system is frozen into one of the minima in the potential 
energy surface. To obtain these minima we follow the method of BDS and D and apply a 
transformation: 

U’ = exp ( j  ix a / p j  i (4.1) 

where a,! are free parameters for the trigonal cluster and P,! are the conjugate momenta. 
Applying the transformation U‘ to Q j  has the effect of displacing the origin of each 
oscillator by -a,! h. When the transformation is applied to the total Hamiltonian H‘ , it 
gives 

G’ = (U’) - ’H’U’  = a; + fj; + & (4.2) 
where H i  does not contain any coupling to excited phonon states and is given by 

H i  = - r e B B  - r , B ,  + f i ( r 4 B 4  + r5B5  + r6B6) 

where H!k(a,!) is obtained from the original H;! with Qj replaced by a,!. 
Now H i  and H i  contain terms that couple the system to excited phonon states, so 

H i  = Hint + AH,,,  - 2 p , Z i ~ ~ Q j c ~ , !  (4.4) 
i 

Now 
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where, for the change in ligand charge, the pi parameters are linear combinations of the 
a,! parameters as listed below for the radial t2 modes: 

When the system is coupled to transverse t2-modes the parameters are 

P O  = + (6/8)(2aC - a; - + 2 ~ ~ 4 )  

P E  = (Y: + (6/8)(2& + V?a; - V?&) 
p7 = CU; + ( S / ~ ) ( - C U ~  + + 2 4  - - (U(,) (4.8) 

ps = CY; + (6/8)(-ak - 
p g  = a(, + (6/8)(2ak - a; - CY; + 2 4 ) .  

- a; + 2ak - CY(,) 

The values of the oscillator displacement parameters a,’ needed to freeze the system 
into the potential minima in strong coupling are found by minimizing the total energy 
of the system with respect to the a,!. As H [  is independent of the Q s ,  it is a good 
Hamiltonian for determining approximate eigenstates of H .  Also, as the pi parameters 
are linear combinations of the a,! parameters, an alternative procedure is to minimize 
with respect to the pi. This means that the minima may be determined by finding those 
values of pi (and hence of the a,’) for which 

d(H’) /dPi  = 0 ( j = 8 , ~ , 4 , 5 , 6 o r 8 , ~ , 7 , 8 , 9 ) .  (4.9) 
Equivalent formulae can be derived for the problem of a change in ligand position. 
However, the derivation is even more complicated as V h  is in general not equal to V,. 
However, in point charge crystal field calculations, the coupling constants are dominated 
by the second order terms so that Vh is approximately equal to VM. With this simplifying 
assumption, the resulting equations are the same as (4.7)-(4.9) with 6 replaced 
by -40. In the following discussions therefore, we take account of both effects by using 
the trigonal parameter 6’ where 6 ’ = 6 - 40. 

5. The potential minima in linear coupling 

The analysis follows form to that given in BDS, equations (5.1) to (5.6) withAj replaced 
by Bi in all expressions. The minima are found with respect to the pi instead of the a,!. 
Again five simultaneous equations are formed namely: 

2Ck + 4X’BO + ( p ’  + 4(X’)2)[yE(1 - 46’)BO + Q s C ; ]  = 0 

2C: + 4X’B, + ( p ’  + 4(X‘)2)[yE(1 - 46’)B, + BSCP] = 0 
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For coupling to the e- and transverse t2-modes, the labels 4 ,5  and 6 are replaced by 
7 ,8  and 9 respectively. Similarly, the parameters yT and Y E T  are replaced by yz  and YE2 

respectively where 

Cb = BZ, - B i  + $(B$ + B: - 2Bi )  

CL = -2BEB0 - i f i ( B $  - B:)  

C i  

C T ~  = B4 - 46(B4 + B5 + B6) 

C7-2 = B5 - 46(B4 + B5 + B6) 

CT3 = 8 6  - 16(B4 + B5 + B6) B4(BO - * B E )  + f i B 5 B 6  

(5.3) 

The two independent problems, one involving the radial t2-modes and the other the 
transverse t2-modes, both display the same form of equations as those found in the 
original work of BDS and D. They differ only in detail. 

In seeking solutions to equations ( 5 .  l), it is necessary to make some approximations 
as the equations are considerably more complicated than the corresponding equations 
in BDS. We assume that 6 is small so that, for each minimum k ,  the values of the cujk)’ 
are close to the values a,(k) for the regular tetrahedral cluster. This implies that the 
parameters pjk) only differ from the parameters cujk) by small amounts and that the 
energies of the wells differ by only small amounts from those calculated for the regular 
tetrahedral cluster. The new parameters are then expanded in a Taylor’s series about 
the value obtained for the regular tetrahedral system retaining only terms which are first 
order in 6. After much manipulation (Simpson 1989), the values of ajk)’ and the 
corresponding energies can be obtained, assuming that the effective masses are the 
same. The coordinates of the 13 minima ( k  = 1-13) are given in terms of the parameters 
nfk) and A j k ) ,  where A j k )  = 0 in the regular case (compare to equation (11) of D): 

cup)’ = (vi/hpui)(njk’ + i 6 ’ A j k ) ) .  (5.4) 
The values of the nfk) and the A f k )  are given in table 1 for the 13 minima for both cases 
(radial and transverse modes) of a T-ion coupled to one e-mode and one t2-mode. 

The new energies and original orbital states are given in table 2. In deriving these 
results, it has been assumed that the frequencies ui are comparable in magnitude and 
that the relative values of the coupling constants KE and either KT or K ,  can be chosen 
to reproduce the tetragonal [T €9 e], trigonal [T €9 t] and orthorhombic [T €9 (e + tz)] 
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Table 2. The corrections to the energies of the wells for the impurity cluster and the 
corresponding original orbital states. 

Well type k T2-mode Energy of well Orbital state 

-@‘E, x ,  y ,  Tetragonal 1-3 - 

4 6  +‘E, a ,  b ,  c 
7 

-tf5’E2 a ,  b ,  c 4-6 Transverse 7 Trigonal 

-($E,, -AEE)6’  xy+ ,yz+ ,  zx+ 
- ( & € E ,  + AEE)S’ x y - ,  y z - ,  Z X -  

Orthorhombic *’ lo’ l2 Radial 

-(4EE2 + AEE + BEJ6’  X Y + ,  YZ+, Z X +  

- ( $ E E * - A E E - B E ~ ) ~ ’  X Y - , Y Z .  , Z X _  
Orthorhombic ’’ lo’ l2 Transverse 

d Radial -@’E, Trigonal 

0 d 

9, 11,13 

9, 11, 13 
~~ 

The definitions of the ground vibronic states for the original cluster are as follows: 

solutions. (Note that KBL must have a value such that the orthorhombic solutions are 
true minima; see BDS and Dunn and Bates 1989.) 

It can be seen from table 2 that, although the solutions of the impurity complex 
problem fall into the three coupling regions identified originally in the solution to the 
regular problem, the orbital degeneracies of the trigonal and orthorhombic systems are 
lifted (in agreement with the trigonal symmetry) although, to a first approximation, the 
states are unchanged. Also, although the radial and transverse trigonal systems behave 
in the same way as far as symmetry is concerned, the solutions differ in detail. 

6. Improvements in the eigenstates within a well 

For the regular cluster, the transformed states without any phonon excitations are, for 
well k ,  IXSk); 0) where Xlk)  is the orbital state. The orbital ground state has r = 0; the 
two excited states have r = 1 and 2. The ground state of the impurity cluster can be 
related to that of the regular cluster by the general equation 

where 
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As (I?; - I?,) does not contain any phonon operators, the ySk) involve the matrix 
elements of orbital operators only. Now 

(I?; - I?,) = -46’ kl‘,EIKjk) (6.3) 
I 

where rl is defined in (3.4), E, = V:/2yo: and where ~ j k )  is defined by y j k )  - cuik) = 
t d  ’VIKjk)/hpof. Also 

kj = 1 ( j  = 0, E) 
kj = -V3 ( j  = 4 , 5 , 6 o r 7 , 8 , 9 ) .  

Detailed calculations show that in both cases 

p 1 = 0 for all k 

y p  = O  fork  = 1 , 2 , 3 , 7 , 9 ,  11,13. 

For the radial t2-modes, 

y r )  = - f i S ’ / 6  fork  = 4 , 5 , 6  

f i S ’ E T  (---) 1 V2 E E  for k = 8,10,12 
= E E  - ET 2 VE ET 

and for the transverse t2-modes, 

y p  = + f i S ’ / l 2  fork = 4 , 5 , 6  

y p  = fork = 8,lO and 12. 

Thus it can be seen that the perturbation introduced by the impurity ligand affects only 
three (namely a ,  b and c)  of the four trigonal ground states and also three (namely xy,, 
y z ,  and zx+) of the six orthorhombic ground states. 

7. Discussion 

The aim of this paper has been to obtain the solution to the Jahn-Teller problem of an 
orbital triplet ion coupled strongly to its surroundings consisting of a trigonally distorted 
tetrahedral cluster. The distortion is due to one of the ligands being displaced along 
the bond or being a different ion or, as is more likely, to both changes occurring 
simultaneously. The calculations described are specifically for a change in charge but it 
is trivial to amend the details of the analysis for the other situation or when both cases 
occur simultaneously (see section 3.2). 

The analysis has concentrated on the ion-lattice coupling which has been limited to 
the e-modes and to one of the t,-modes of the distorted cluster. The coordinates of the 
minima in the potential energy surface have been found by approximation methods by 
relating the analysis to that undertaken previously for the regular tetrahedral cluster. 
The situation which we have modelled is thought to be fairly common particularly as 
complexes are well known to exist in many semiconductors. 

It is clear from table 1 that the minima in the potential energy surface for an ion in a 
complex are displaced from their position for the regular tetrahedron by varying 
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amounts. The number of minima is unchanged. In order to estimate the possible mag- 
nitudes of these shifts, we take the simple case of a vacancy. The most important effect 
is the removal of the ligand charge so that 6 = -1 in equation (2.1). This in turn would 
produce a shift of up to 25% in the positions of some of the minima (see equation (5.4) 
and table 1). However, in many complexes the shift is likely to be much less than this. 

Previous attempts, such as those cited in the introduction, have concentrated on the 
modifications needed in defining the appropriate Qs and ion-lattice coupling constants 
for the reduced symmetry. Such results are contained within equations (3.8) to (3.12) in 
the analysis presented here. There do not appear to be any previous calculations which 
have been reported concerning the accurate positions of the minima in Q-space for the 
distorted complex. Neither the corrections to the results for anisotropy ( D u m  and Bates 
1989) nor the effect of the static trigonal field have been discussed in detail here. 
However, in obtaining the effective Hamiltonian for a real system a full account of these 
corrections must be included. 

The main aim of this work was to provide an accurate base for the modelling and 
identification of JT impurities located at the centre of a complex. The calculations have 
been based on the unitary transformation and energy minimization method devised by 
two of the authors because from it accurate expressions for the minima can be obtained 
for strongly coupled JT systems. This is needed because, in order to model real systems, 
it is necessary to derive an accurate effective Hamiltonian to model the physical proper- 
ties of the ion. This in turn demands that accurate values for the JT reduction factors 
must be obtained. It is possible to do this by the transformation method because good 
eigenstates can be obtained particularly for moderately and strongly coupled systems as 
described in sections 5 and 6 and in tables 1 and 2. The calculation of such reduction 
factors will form the basis of a second paper (Simpson et a1 1991) to be published shortly. 
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